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MATHEMATICAL MODEL
Fluid — Structure Interaction Problem

The fluid is assumed ideal, i.e., inviscid and incompressible, and its
motion is irrotational and there exists a fluid velocity vector, v, which
can be defined as the gradient of the velocity potential function @ as

v(x,y,2,t)=V®D(x,y,2z,t) (1)

The velocity potential @ may be expressed as

O=Ux+¢ 2)



MATHEMATICAL MODEL
Fluid — Structure Interaction Problem

Here the steady velocity potential U x represents the effect of the
mean flow associated with the undisturbed flow velocity U in the
Axial direction. Further,® is the unsteady velocity potential
associated with the perturbations to the flow field due to the motion
of the flexible body and satisfies the Laplace equation

Vig=0 (3)

throughout the fluid domain. For the structure immersed in and/or
containing flowing fluid, the vibratory response of the structure may
be expressed in terms of principal coordinates as

p(t)=p,c* @



MATHEMATICAL MODEL
Fluid — Structure Interaction Problem

The velocity potential function due to the distortion of the structure in
the rth in vacuo vibrational mode may be written as follows

6. (x,9,2,0) =@, (x,9,2) py, & (5)

where M represents the number of modes of interest, and pOris an
unknown complex amplitude for the rth principal coordinate.
On the wetted surface of the vibrating structure the normal fluid velocity
must equal to the normal velocity on the structure and this condition for
the rth modal vibration of the elastic structure containing and/or
submerged in flowing fluid can be expressed as

o u, ou (6)

0, _ 0w, 0u,,
on ot O0x




MATHEMATICAL MODEL
Fluid — Structure Interaction Problem

The vector ur denotes the displacement response of the structure in the
rth principal coordinate and it may be written as

u, (x,y,z,0)=u,(x,,2) p,. "' (7)

Substituting Egs. (5) and (7) into (6), the following expression is
obtained for the boundary condition on the fluid-structure interface

O Ou, (x,,2)
L=/ ,v,2) n+U—= ‘n
on (502 ox (8)



MATHEMATICAL MODEL
Fluid — Structure Interaction Problem

It is assumed that the elastic structure vibrates at relatively high
frequencies so that the effect of surface waves can be neglected.
Therefore, the free surface condition (infinite frequency limit condition)
for the perturbation potential can be approximated by

on the free surface (9)

@, =0
The method of images may be used to satisfy this boundary condition.
By adding an imaginary boundary region, the condition given by Eq.
(9) at the horizontal surface can be omitted; thus the problem is
reduced to a classical Neumann case. It should be noted that, for the
completely filled elastic structure, the normal fluid velocity cannot be
arbitrarily specified. It has to satisfy the incompressibility condition

0P o _ (10)
SHS - dS =0,




MATHEMATICAL MODEL
Numerical Evaluation of Perturbation Potential

The boundary value problem for the perturbation potential, may be
expressed in the following form:

(&) =[[(# (5.6 q()-$(5)q (5,£))dS (1)
SW

where ¢ and s denote, respectively, the evaluation and field points on
the wetted surface. is the fundamental solution and expressed as

follows,

1 (12)

drr

#(5,8)=



MATHEMATICAL MODEL
Numerical Evaluation of Perturbation Potential

g=0¢/0n is the flux, and r the distance between the evaluation
and field points. The free term is defined as the fraction of that lies
inside the domain of interest. Moreover, ¢ (s,&) can be written as

g (s,E)=—(0r/on)/4rr (13)

The fluid-structure interaction problem may be separated into two
parts: (/) the vibration of the elastic structure in a quiescent fluid, and
(if) the disturbance in the main axial flow due to the oscillation of the
structure. Thus, defining , Eq (7) may be divided into two separate
parts as

op 0¢, _0u(x,y,2) (14a,b)
n

=u(x,y,z)-n, on P :




MATHEMATICAL MODEL
Numerical Evaluation of Perturbation Potential

For the solution of Eq. (11) with boundary conditions (14a and b), the wetted
surface can be idealized by using boundary elements, referred to as
hydrodynamic panels, and the distribution of the potential function and its flux
over each hydrodynamic panel may be described in terms of the shape functions
and nodal values as

¢e:ZNej¢ej, qe:ZNejqej (15)
j=1 j=1

Here, n, represents the number of nodal points assigned to each hydrodynamic
panel, and Ne, the shape function adopted for the distribution of the potential
function. e and j indicates the numbers of the hydrodynamic panels and nodal
points, respectively.



MATHEMATICAL MODEL
Numerical Evaluation of Perturbation Potential

In the case of a linear distribution adopted in this study, the shape
functions for a quadrilateral panel may be expressed as

Ny =(1-¢)A-n)/4
Ny =((I+5)(A-m)/4
(16)

N3 =(d+¢)A+m))/4

Ny =((=¢)A+m))/4



MATHEMATICAL MODEL
Numerical Evaluation of Perturbation Potential

After substituting Egs. (15) and (16) into Eq. (11) and applying the
boundary conditions given in Egs. (14a) and (14b), the unknown
potential function values can be determined from the following sets of

algebraic equations

¢, D +ZZ(¢111”N g dS = ZZ(“U n; ”N ¢ ds). (17 a)

i=l j=1 i=l j=1

Ck ¢2k +ZZ(¢2’J.[

i=1 j=l1 i=1 j=I

n, [N ¢ as).
AS,

k=12, ... , m

where m denotes the number of nodal points used in the discretization of
the structure



MATHEMATICAL MODEL
Calculation of Generalized Fluid-Structure

Interaction Force Coefficients

Using the Bernoulli's equation and neglecting the second order terms, the
dynamic fluid pressure on the elastic structure due to the rth modal vibration
becomes

o4, .08, (18)
P s Vosyl)=— U ’

(X, 0,2,1) p(at+ ax)
Substituting equation (5) into (18), the following expression for the pressure is
obtained,

09,
ox

P.(x,y,z,t)=—p(A¢, +U—=L) p,, ™. (19)



MATHEMATICAL MODEL
Calculation of Generalized Fluid-Structure
Interaction Force Coefficients

By using the definition of ¢, =44, +U¢,., | equation (19) may be
rewritten in the following form:

a¢r1
oXx

09,
})r(xayazat):_p(ﬂ’zﬁﬁl—'_l]ﬂ’( +¢r2)+U2 axz)pO}’elt (20)

The kth component of the generalized fluid-structure interaction force
due to the rth modal in-vacuo vibration of the elastic structure subjected
to axial flow can be expressed in terms of the pressure acting on the
wetted surface of the structure as



MATHEMATICAL MODEL
Calculation of Generalized Fluid-Structure
Interaction Force Coefficients

Z,,. = ”B(x,y,z,t)uk nds
S

w

a¢r1 2 a¢r2
+ +U
ax ¢r2) ax

5
A ,)u, ndS
0Xx

=—po, " [ P (A4, +U A( )u, ndS
S

w

(2D)

=1’ Por e’ p,”¢r1 u, ndS—Ap,, ! 'OU.U(
: S

w w

8¢r2
oXx

—pO,,e“pUzﬁ u, nds
S

w



MATHEMATICAL MODEL
Calculation of Generalized Fluid-Structure
Interaction Force Coefficients

The generalized added mass, A,,, generalized fluid damping (due to the
Coriolis effect of fluid), B,, and generalized fluid stiffness (due to the centrifugal

effect of fluid), C,,, terms can be defined as

A, :PJ.J.%“;{ nds, (22)
SW
9, 23
B, = pU[[( - L+ 4 ,)u, nds, (23)
Sy X

0
C,, =pU | ;;2 u, nds. (24)



MATHEMATICAL MODEL
Calculation of Generalized Fluid-Structure

Interaction Force Coefficients

Therefore, the generalized fluid-structure interaction force component,
Z,., can be written as

Zkr(t) — _Akr ﬂ“z pOr e/“ _Bkr ﬂ“ pOr e/“ _Ckr pOr e/“

. . (25)
=-A,, p,(t)-B,, p,(t)-C,, p,(t)



MATHEMATICAL MODEL
Calculation of Wet Frequencies and Mode Shapes

The generalized equation of motion for the elastic structure in contact
with axial flow assuming free vibrations with no structural damping is

7 B (26)
[z (a+A)+/1(B)+(c+C)}p -0,

where a and ¢ denote the generalized structural mass and stiffness

matrices, respectively, and they are calculated by using a standard
finite element program [21]. The matrices A, B and C represent the
generalized added mass, generalized fluid damping and generalized

fluid stiffness matrices, respectively.



Hydroelastic Investigation of a 1900 TEU
Container Ship

MAIN PARTICULARS
Length overall : 182.85 m
Length perpendicular : 171.00 m
Breadth (moulded ) : 28.00 m
Depth (moulded ) : 16.10 m
Design draught : 10.00 m
Scatling draught : 11.00 m
Service speed : 19.50 knot

Deadweight (at scantling draught ) : 26200 ton



1900 TEU CONTAINER SHIP

WHEELHOUSE DECK

&) o
EA

-

Figure 1 — General arangement



Hydroelastic Investigation of a 1900 TEU
Container Ship — FE Model

* FE calculations were carried out by Delta
Marine, Turkey.

* Abaqus employed for the FE calculations
« Ship Model is developed in two parts;

Aft part consists of engine room, poop deck, aft
peak and Superstructure decks.

Fore part consists of cargo area, fore peak,
forecastle deck

* Fine mesh density is used for the aft part model



Hydroelastic Investigation of a 1900 TEU
Container Ship — FE Model

» Cargo loading is applied as inertia mass
elements distributed over the cargo area
inner bottom plating

» Ballast weights, heavy fuel oil and other
tank weights are also applied as inertial
mass elements.

* Finite elements model has 176030 nodes,
176800 structural elements



Hydroelastic Investigation of a 1900 TEU
Container Ship — FE Model — Loading Cond.

 Full loading with design draught of 10 m.
» Cargo loading — 17150 t

 Ballast weight — 3021 t

* Heavy fuel oil — 1886 t

* Marine diesel oil — 165 t

* Fresh water — 206 t

» Other tank weights — 165 t



Hydroelastic Investigation of a 1900 TEU
Container Ship — FE Model — Loading Cond.

 LWT — 9000t

o DWT —22595.7 t

* Total Weight — 31595.7 t

» Total Finite Element Weight — 31520 t
e LCG-79.85m

« LCG-FEM-80.3m
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Hydroelastic Investigation of a 1900 TEU
Container Ship — BE Model

Number of nodes = 10674 12 in vacuo modes employed in the analysis
Number of elements = 10772




generalized added mass (kgm?)
(lst ten modes, corresponding to 1 kgm? generalized structural mass)

1 2 3 4 5 6 7 8 9 10
L 0.24 0.00 0.11 0.03 0.00 -0.0%9 0.11 0.00 -0.01 ©0.00
2 g.00 0O.83 0.00 40.00 —0,06 0,090 .00 0.20 .90 0.04
3 0.07 0.00 0.27 -0.02 0.00 0.00 0.08 0.00 0.01 0.00
4 H.08 U,.00 ~-0,98 0,17 001 .03 —@:06r 0.080 =9.02 Q.00
5 000 —2.0% 0.00 0.80 0.6/ Q.08 000 0,04 0,00 =0.01
e -0.07 0.00 0.00 0.02 0.00 0.20 -0.08 0.00 0.02 0.00
E 0.45 0.00 0.50 -0.15 0.00 -0.38 0.58 0.00 -0.03 -0.02
8 0.00 0.32 0.00 0.00 0.05 0.00 0.00 0.49 0.00 -0.04
9 -0.01 0.00 0.01 -0.02 0.00 0.03 -0.01 0.00 0.15 0.00
L ~0,01 @.00 -0.,0]L 0.00 -0.02 0,01 —0.01 <=0.06 0.0l 0.08

principle coordinates (lst ten modes)

1 2 3 4 2| 6 7 8 9 10
1 1.00 0.01 0.08 0.01 0.00 -0.01 0.04 0.00 0.00 0.00
2 0.01 -1.00 0.00 O0.00 0.01 0.00 0.00 -0.03 0.00 -0.01
3 -0.21 0.00 0.98 -0.02 0.00 0.00 0.07 0.00 0.00 ©0.00
4 .00 0.05 0.00 -0.02 1.00 0.00 0.00 0.03 0.00 -0.01
5 0.01 0.00 -0.04 -0.98 -0.01 -0.04 0.17 0.00 0.01 0.00
6 0.12 0.00 0.07 -0.15 0.00 0.36 -0.91 0.00 0.02 ©0.01
7 0.04 0.01 0.07 -0.05 0.00 -0.52 -0.84 -0.07 -0.01 ©0.01
8 0.00 0.13 -0.01 ©0.01 0.04 0.07 0.10 -0.96 0.01 0.07
9 0.01 0.00 -0.01 0.03 0.00 -0.04 0.03 0.01 1.00 ©0.02
10 0.00 0.0z 0.00 0.00 -0.04 0.00 -0.01 0.02 0.01 -0.64




Hydroelastic Investigation of a 1900 TEU
Container Ship — FE Wet Model

60300 fluid elements are used to model
the behavior of fluid surrounding the ship
hull.






ot

=0/

: ._
i
-
AV
e A=
e
.ﬁﬁmﬁﬁﬁ.ﬂ% B, ﬁ__ A
TR e e e e e o W M 141
bl
RN
KR
il
e
L e

S
-
o

=

—

S
n!._m.-._q __—¢

=3
i S

e

e

L
Vi

B iy
h

T
L

=
-
=

e

o

R
i
S

e
e

=
"

o

=
T
=




Comparison of Wet BE and FE
Results

dry wet freqg (Hz)
global vibration mode freq

(Hz) fem bem ko
lst torsion 1.119 0.998 0.998 0.0
1lst bending leodd LGdE 1,041 2.5
l1st hor. bending & tors. 1.515 1.328 1.348 1.5
2nd torsion 2+0487T 2:328 2:.342 0.7
2nd bending 2:676 2.059 2.071 0.6




NUMERICAL RESULTS

Fluid Storage Tanks
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NUMERICAL RESULTS
Fluid Storage Tanks

Table 3

Comparisons of dry and wer natural frequencies for clamped—free cylindrical shell (Hz)

Mode (m,n) Dry analysis

Wet analysis

This FEA Experiment d/L = 0.5 d/L =07 d/L=1
study [5]  [5]
This FEA [5] This FEA [5] Experiment This FEA [5] Experiment
study study [5] study [5]
1,3 634.2 633 616 608.9 609.4 542.0 543.1 522 400.7 400.6 388
1,2 814.2 814 708 769.3 771.1 669.8 672.7 582 481.1 482.1 421
1,4 949.2 947 945 908.4 908.8 806.8 806.0 798 635.3 633.2 628
1,5 1482.5 1480 1479 1351.8 1352.8 11955 1188.4 1196 1039.7 1033.0 1027
2,4 1649.8 1648 1628 1308.4 1303.9 1261.4 1253.2 1244 1111.8 1110.6 1094
1,1 1825.6 1827 — 1654.7 1654.4 14073 14074 — 1041.9 1038.6
2,5 1840.3 1839 1851 1571.3 1565.8 1557.7 1553.8 1546 1305.0 1304.2 1299
2,3 2029.9 2029 1969 15199 15152 1434.0 14253 1394 1288.0 1286.9 1245
1,6 2156.8 2154 2151 1843.5 1842.7 1693.6 1679.7 — 1574.3 1561.3 1546
2,6 23858 — — 2189.6 2189.0 2119.7 — — 1762.4 1762.6 1748

[5] T. Mazuch, J. Horacek, J. Trnka,

J. Vesely, Natural modes and frequencies of a thin
clamped-free cylindrical storage tank partially filled with water: FEM and measurements,
Journal of Sound and Vibration, Vol.193, pp.669-690, 1996



NUMERICAL RESULTS
Fluid Storage Tanks
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Fluid Storage Tanks
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anti-symmetric shell-dominant mode; (e) second symmetric plate-dominant mode; (f) second anti-symmetric plate-
dominant mode; (g) second symmetric shell-dominant mode; (h) second anti-symmetric shell-dominant mode.



NUMERICAL RESULTS
Elastic Structure Containing Axial Flow
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Fig. 1. Cylindrical shell conveying flowing fluid, (a) with rigid extensions and (b) with flexible extensions.



NUMERICAL RESULTS
Elastic Structure Containing Axial Flow

The structure adopted for calculations is a finite length cylindrical shell,
simply supported at both ends, and it was analytically investigated by
Weaver and Unny (1973), Selmane and Lakis (1997), Amabili et al
(1999) and Amabili and Garziera (2002). The shell structure has the
geometric and material properties: length-to-radius ratio L/R = 2,
thickness-to-radius ratio hi/R = 0.01, Young’s modulus E = 206 GPa,
Poisson’s ratio v = 0.3, and mass density ps = 7850 kg/m3. Fresh water
is used as the contained fluid with a density of pf = 1000 kg/m3.



NUMERICAL RESULTS
Elastic Structure Containing Axial Flow
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NUMERICAL RESULTS
Elastic Structure Containing Axial Flow
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NUMERICAL RESULTS
Elastic Structure Containing Axial Flow
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Conclusions

It can also be said that the hybrid method introduced in this study
can be applied to any shape of cylindrical structure partially in
contact with internal and/or external flowing fluid, in contrast to the
studies found in the literature.

The present study has demonstrated the versatility of the method
developed before and extended in this study further. By introducing
the linearly varying boundary elements in this study, the
convergence of the numerical predictions were obtained much faster
than those using constant distributions over the boundary elements.

the predicted frequency values behave as expected. It is to say that
they decrease with increasing non-dimensional axial flow velocity,
and they reach a zero frequency for the axial flow velocity at which a
static divergence occurs.



Hydro-Elastic Analysis of Marine
Structures Using a Boundary Integral
Equation Method

L. Kaydihan?, B. Ugurlu'! and A. Ergin’

! Faculty of Naval Architecture and Ocean Eng., ITU,
Turkey
2 Delta Marine, Turkey



Hydroelasticity Research Group in ITU

Professor A. Ergin, ITU

Dr. B. Ugurlu, ITU

L. Kaydihan, DELTA MARINE TURKEY
S.A. Koroglu, ITU



Activities of Research Group

General 3D Hydroelasticity Method
Experimental studies; modal analysis,

operational modal analysis, vibration
measurements

Outcomes are reported in Journal of
Sound and Vibration and Journal of Fluids
and Structures

Research Projects founded by Technical
Research Council of Turkey



MATHEMATICAL MODEL
Fluid — Structure Interaction Problem

The fluid is assumed ideal, i.e., inviscid and incompressible, and its
motion is irrotational and there exists a fluid velocity vector, v, which
can be defined as the gradient of the velocity potential function @ as

v(x,y,z,t)=VD(x,y,2z,t) (1)

The velocity potential @ may be expressed as

O=Ux+¢ (2)



MATHEMATICAL MODEL
Fluid — Structure Interaction Problem

Here the steady velocity potential U x represents the effect of the
mean flow associated with the undisturbed flow velocity U in the
Axial direction. Further,® is the unsteady velocity potential
associated with the perturbations to the flow field due to the motion
of the flexible body and satisfies the Laplace equation

Vig=0 (3)

throughout the fluid domain. For the structure immersed in and/or
containing flowing fluid, the vibratory response of the structure may
be expressed in terms of principal coordinates as

p(t)=p,c* @



MATHEMATICAL MODEL
Fluid — Structure Interaction Problem

The velocity potential function due to the distortion of the structure in
the rth in vacuo vibrational mode may be written as follows

6. (X,9,2,0) =@, (x,9,2) py, &' (5)

where M represents the number of modes of interest, and pOris an
unknown complex amplitude for the rth principal coordinate.
On the wetted surface of the vibrating structure the normal fluid velocity
must equal to the normal velocity on the structure and this condition for
the rth modal vibration of the elastic structure containing and/or
submerged in flowing fluid can be expressed as

o u, ou (6)

9, = ( +U—")n
on ot O0x




MATHEMATICAL MODEL
Fluid — Structure Interaction Problem

The vector ur denotes the displacement response of the structure in the
rth principal coordinate and it may be written as

u, (x,y,z,0)=u,(x,,2) p,. "' (7)

Substituting Egs. (5) and (7) into (6), the following expression is
obtained for the boundary condition on the fluid-structure interface

9, =Au, (x,y,z)-n+Uaur (x,),2) ‘n
on 0x

(8)



MATHEMATICAL MODEL
Fluid — Structure Interaction Problem

It is assumed that the elastic structure vibrates at relatively high
frequencies so that the effect of surface waves can be neglected.
Therefore, the free surface condition (infinite frequency limit condition)
for the perturbation potential can be approximated by

on the free surface (9)

@, =0
The method of images may be used to satisfy this boundary condition.
By adding an imaginary boundary region, the condition given by Eq.
(9) at the horizontal surface can be omitted; thus the problem is
reduced to a classical Neumann case. It should be noted that, for the
completely filled elastic structure, the normal fluid velocity cannot be
arbitrarily specified. It has to satisfy the incompressibility condition

G
I a% ds =0, 1o

Sy+S,,




MATHEMATICAL MODEL
Numerical Evaluation of Perturbation Potential

The boundary value problem for the perturbation potential, may be
expressed in the following form:

(&) =[] (5,59()-9 ()¢ (5,£))dS (1)
SW

where ¢ and s denote, respectively, the evaluation and field points on
the wetted surface. is the fundamental solution and expressed as

follows,

1 (12)

drr

#(5,8)=



MATHEMATICAL MODEL
Numerical Evaluation of Perturbation Potential

g=0¢/0n s the flux, and r the distance between the evaluation
and field points. The free term is defined as the fraction of that lies
inside the domain of interest. Moreover, ¢ (s,&) can be written as

g (s,&)=—(0r/on)/4rxr (13)

The fluid-structure interaction problem may be separated into two
parts: (/) the vibration of the elastic structure in a quiescent fluid, and
(if) the disturbance in the main axial flow due to the oscillation of the
structure. Thus, defining , Eq (7) may be divided into two separate
parts as

o4 0 ¢, zﬁu(x,y,z).n (14a,b)
on

=u(x,y,z)-n, on P :




MATHEMATICAL MODEL
Numerical Evaluation of Perturbation Potential

For the solution of Eq. (11) with boundary conditions (14a and b), the wetted
surface can be idealized by using boundary elements, referred to as
hydrodynamic panels, and the distribution of the potential function and its flux
over each hydrodynamic panel may be described in terms of the shape functions
and nodal values as

¢e:ZNej¢ej, qe:ZNejqej (15)
j=l1 Jj=l1

Here, n, represents the number of nodal points assigned to each hydrodynamic
panel, and Ne, the shape function adopted for the distribution of the potential
function. e and j indicates the numbers of the hydrodynamic panels and nodal
points, respectively.



MATHEMATICAL MODEL
Numerical Evaluation of Perturbation Potential

In the case of a linear distribution adopted in this study, the shape
functions for a quadrilateral panel may be expressed as

Ny =(I-¢)A-n)/4
Ny =((I+5)(A-m)/4
(16)

N3 =(d+¢)(+m))/4

Ny =((=¢)A+m))/4



MATHEMATICAL MODEL
Numerical Evaluation of Perturbation Potential

After substituting Egs. (15) and (16) into Eq. (11) and applying the
boundary conditions given in Egs. (14a) and (14b), the unknown
potential function values can be determined from the following sets of

algebraic equations

¢, D +ZZ(¢111”N g dS = ZZ(“U n; _UN ¢ ds), (17 a)

i=l j=1 i=l j=I

ij¢dS)

Ck ¢2k +ZZ(¢2U

i=l j=l1 i=1 j=I

where m denotes the number of nodal points used in the discretization of
the structure



MATHEMATICAL MODEL
Calculation of Generalized Fluid-Structure

Interaction Force Coefficients

Using the Bernoulli's equation and neglecting the second order terms, the
dynamic fluid pressure on the elastic structure due to the rth modal vibration
becomes

Py =—pCruSh, (18)

Substituting equation (5) into (18), the following expression for the pressure is
obtained,

04,

A
50 Por e " (19)

E,()C,y,Z,t):—p(ﬂ¢r +U




MATHEMATICAL MODEL
Calculation of Generalized Fluid-Structure
Interaction Force Coefficients

By using the definition of ¢, =44,,+U¢,., | equation (19) may be
rewritten in the following form:

a¢r1

})r(xayazat):_p(j‘z ¢r1 +Uﬂ’( P
X

09,
+4,2)+U"—=) py, e (20)

The kth component of the generalized fluid-structure interaction force
due to the rth modal in-vacuo vibration of the elastic structure subjected
to axial flow can be expressed in terms of the pressure acting on the
wetted surface of the structure as



MATHEMATICAL MODEL
Calculation of Generalized Fluid-Structure
Interaction Force Coefficients

Z,,. = ”E(x,y,z,t)uk nds
Sy

0 0
=—po, " [ P (A4, +U A( i +¢.,)+U> ¢’”2)ukmzs
5 0x 0x
04, (21

=-2% p,, e p”¢rl u, nds—Ap,, e’ pU”(
< S

w w

— Do, elt ,0U2£;‘: aa¢;2

+ u, ndS
ax r2) k

u, nds



MATHEMATICAL MODEL
Calculation of Generalized Fluid-Structure
Interaction Force Coefficients

The generalized added mass, A,,, generalized fluid damping (due to the
Coriolis effect of fluid), B,, and generalized fluid stiffness (due to the centrifugal

effect of fluid), C,, terms can be defined as

A, :PJ.'[¢r1“k nds, (22)
SW
a¢l" 23
B, = pU[[( - L+ 4 ,)u, nds, (23)
Sy X

0
C,, =pU | ;;2 u, nds. (24)



MATHEMATICAL MODEL
Calculation of Generalized Fluid-Structure

Interaction Force Coefficients

Therefore, the generalized fluid-structure interaction force component,
Z,., can be written as

Zkr(t) — _Akr ﬂ“z pOr e/“ _Bkr ﬂ“ pOr e/“ _Ckr pOr e/“

. . (25)
:_Akr pr(t)_Bkr pr(t)_ckr pr(t)



MATHEMATICAL MODEL
Calculation of Wet Frequencies and Mode Shapes

The generalized equation of motion for the elastic structure in contact
with axial flow assuming free vibrations with no structural damping is

) ) (26)
[1 (a+A)+/1(B)+(c+C)}p -0,

where a and ¢ denote the generalized structural mass and stiffness

matrices, respectively, and they are calculated by using a standard
finite element program [21]. The matrices A, B and C represent the
generalized added mass, generalized fluid damping and generalized

fluid stiffness matrices, respectively.



Hydroelastic Investigation of a 1900 TEU
Container Ship

MAIN PARTICULARS
Length overall : 182.85 m
Length perpendicular : 171.00 m
Breadth (moulded ) : 28.00 m
Depth (moulded ) : 16.10 m
Design draught : 10.00 m
Scatling draught : 11.00 m
Service speed : 19.50 knot

Deadweight (at scantling draught ) : 26200 ton



1900 TEU CONTAINER SHIP
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Figure 1 — General arangement



Hydroelastic Investigation of a 1900 TEU
Container Ship — FE Model

* FE calculations were carried out by Delta
Marine, Turkey.

* Abaqus employed for the FE calculations
« Ship Model is developed in two parts;

Aft part consists of engine room, poop deck, aft
peak and Superstructure decks.

Fore part consists of cargo area, fore peak,
forecastle deck

* Fine mesh density is used for the aft part model



Hydroelastic Investigation of a 1900 TEU
Container Ship — FE Model

» Cargo loading is applied as inertia mass
elements distributed over the cargo area
inner bottom plating

» Ballast weights, heavy fuel oil and other
tank weights are also applied as inertial
mass elements.

* Finite elements model has 176030 nodes,
176800 structural elements



Hydroelastic Investigation of a 1900 TEU
Container Ship — FE Model — Loading Cond.

 Full loading with design draught of 10 m.
» Cargo loading — 17150 t

 Ballast weight — 3021 t

* Heavy fuel oil — 1886 t

* Marine diesel oil — 165 t

* Fresh water — 206 t

» Other tank weights — 165 t



Hydroelastic Investigation of a 1900 TEU
Container Ship — FE Model — Loading Cond.

 LWT — 9000t

« DWT —22595.7 t

* Total Weight — 31595.7 t

» Total Finite Element Weight — 31520 t
e LCG-79.85m

« LCG-FEM-80.3m









| e pamrte

ety | .

)

==

5 M. =




T
-9

ALY




___ 1 L
=

i __u“.hrl
7

L 1

]
7 —r — — — ]
N N e sl T L ey g >
e e == _n\VITﬁ'.E_IITT\
—— P e e e e B e :
— 7
]




Dry Freqg = 1.119 Hz

Boo_o Fouoloo:

11, Magnkude

[WMIFET-N] 1]
1R.NAR R
+F 6D
+oadfe M
13.5E3ed0
11701
+[.000 =-+00
1.497e 1
-1.507e1
A.a7de
F 1650
UHaLe 1
-1.075e+H0D

"

—a
"\_ E_pwi Slep-1
= Mnds 1 o = .-y Froyg = [1LGUHEY Trnee o=
Fri.wmoy Var: O, Maciilopde
Coformcd Wor: U Doformuak—orn &ecls Footor: —1.527c+ad

+1.00

II| CDE: den_-za-Zrebarc ol ABRTUSFETANDRD Werw_ . 5.6-1 M e Lo . A Tiaee 2038

model , avi




Dry Freq = 1.331 Hz

Eoale Faclor: +1.00
U, W gnitud

L NAFR N
+3.009 001
=L.Mfe M
15.135e 01
+3.423r M
=1.0/1de N
+£.900e 00
AF17e
423401
By NEERT
£.347= 101
A.4558 41
TUdfa=U

I|I L3 el -ea-freksns, oda LERJUZS ZTIOCRED Verooa: &.6-1 Moty 22k G 7135004 FTE Stancard Tioe 1006

k==

Etep: ZTem-L

""| Mo e Iz Yal= = LT L | fmmy = [ 1 |:}'L‘.||‘:":;f'iﬁ1:‘::l
Polmzry Wai J Fagallude
bt en dave Ll oAttt icn Mea e Santar: 1 OHA e+

modez, avi




Dry Freqg = 1.515 Hz

guale Tooloz: +1.00

U, Mgty

o] 048 e 0D
+A. 7% M
=5.He N
+3.242e
13404 e
1747 e
=Ll eIl
A747e D
A4Mde 1
G243
L MUY e 1
4736e 01
B NIEELE )

E

I| I05: Senl - [owiares . wilks

—
T, Blea; 2.1 i
b Mew: Iy e lae = FULe FTer; = [ T ] leym ecRfE-mr
Poiimey War: T, Hagoi. wlwe
lerbomoeed ware L lernmre—Hdon Hinale Foar—om: + L HY Tetls

RELGUEY S TREDRRD Verslo €.85-1 oo oo 02 179 i Erd Tie 2006

moded, avi




Dry Freq = 1.676 Hz

Boale Teoloz: +1.00

U, Maygnitude

11.048e 00
+/.73R 1
+5. 5y 1N
+5.242e1
1340 R0
+1.747 e
+1.UUU eIl
A.74re 01
A40de
BIRCE CITRI |
L, U4 e L1
4.735e 01
A4Ar 0N

E]

I| COS: S - [owiares . widk

(-2
= e 2ol i
b Mo iy W lae = [ Frernr = P Y] ey ecrfE-mard
Proiey Var: T, Hagoi. wlw
ekomoeed ware L It —don Hnale Foae—om: + LAY IHlE

RELQUSS S TARDARE Vewsln €.86-L Fur Se. 02 17:53:04 3TE Elancord Tie 2028

moded, avi




Hydroelastic Investigation of a 1900 TEU
Container Ship — BE Model

Number of nodes = 10674 12 in vacuo modes employed in the analysis
Number of elements = 10772




generalized added mass (kgm?)
(lst ten modes, corresponding to 1 kgm? generalized structural mass)

1 2 3 4 5 6 7 8 9 10
1 0.24 0.00 0.11 0.03 0.00 -0.0%9 0.11 0.00 -0.01 ©0.00
2 g.00 0.3 0.00 0.00 —0,06 0,00 @.00 0.20 .00 0.04
3 0.07 0.00 0.27 -0.02 0.00 0.00 0.08 0.00 0.01 0.00
4 B.08 U.00 ~0,98 ©,17T —U.,01 .83 —@,0p §.008 =9.02 .00
5 U.00 ~.0% 0.00 0.00 0,67 Q.08 000 0,04 0,00 =0.01
e -0.07 0.00 0.00 0.02 0.00 0.20 -0.08 0.00 0.02 0.00
E 0.45 0.00 0.50 -0.15 0.00 -0.38 0.58 0.00 -0.03 -0.02
8 0.00 0.32 0.00 0.00 0.05 0.00 0.00 0.49 0.00 -0.04
9 -0.01 0.00 0.01 -0.02 0.00 0.03 -0.01 0.00 0.15 0.00
0 0,01 @.02 -0.,01 0.00 -0.02 0,01 —0.01 <=0.06 0.0l 0.08

principle coordinates (lst ten modes)

i 2 3 4 2| 6 7 8 9 10
1 1.00 0.01 0.08 0.01 0.00 -0.01 0.04 0.00 0.00 0.00
2 0.01 -1.00 0.00 0.00 0.01 0.00 0.00 -0.03 0.00 -0.01
3 -0.21 0.00 0.98 -0.02 0.00 0.00 0.07 0.00 0.00 0.00
4 .00 0.05 0.00 -0.02 1.00 0.00 0.00 0.03 0.00 -0.01
5 0.01 ©0.00 -0.04 -0.98 -0.01 -0.04 Q.17 0.00 0,01 0.00
6 0.12 0.00 0.07 -0.15 0.00 0.36 -0.91 0.00 0.02 ©0.01
7 0.04 0.01 0.07 -0.05 0.00 -0.52 -0.84 -0.07 -0.01 ©0.01
8 0.00 0.13 -0.01 0.01 0.04 0.07 0.10 -0.96 0.01 0.07
9 0.01 0.00 -0.01 0.03 0.00 -0.04 0.03 0.01 1.00 0.02
10 0.00 0.0z 0.00 0.00 -0.04 0.00 -0.01 0.02 0.01 -0.64




Hydroelastic Investigation of a 1900 TEU
Container Ship — FE Wet Model

60300 fluid elements are used to model
the behavior of fluid surrounding the ship
hull.
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Comparison of Wet BE and FE
Results

dry wet freqg (Hz)
global vibration mode freqg

riz) fem bem eiE
lst torsion 1.119 0.998 0.998 0.0
1lst bending leodl L1018 1,041 2.5
lst hor. bending & tors. 1.515 1.328 1.348 1.5
2nd torsion 2047 2:328 2.342 0.7
2nd bending 2:676 2.059 2.071 0.6




NUMERICAL RESULTS
Fluid Storage Tanks
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NUMERICAL RESULTS
Fluid Storage Tanks

Table 3

Comparisons of dry and wer natural frequencies for clamped—free cylindrical shell (Hz)

Mode (m,n) Dry analysis

Wet analysis

This FEA Experiment d/L = 0.5 d/L =07 d/L=1
study [5]  [5]
This FEA [5] This FEA [5] Experiment This FEA [5] Experiment
study study [5] study [5]
1,3 634.2 633 616 608.9 609.4 542.0 543.1 522 400.7 400.6 388
1,2 814.2 814 708 769.3 771.1 669.8 672.7 582 481.1 482.1 421
1,4 949.2 947 945 908.4 908.8 806.8 806.0 798 635.3 633.2 628
1,5 1482.5 1480 1479 1351.8 1352.8 11955 1188.4 1196 1039.7 1033.0 1027
2,4 1649.8 1648 1628 1308.4 1303.9 1261.4 1253.2 1244 1111.8 1110.6 1094
1,1 1825.6 1827 — 1654.7 1654.4 14073 14074 — 10419 1038.6 —
2,5 1840.3 1839 1851 1571.3 1565.8 1557.7 1553.8 1546 1305.0 1304.2 1299
2,3 2029.9 2029 1969 15199 15152 1434.0 14253 1394 1288.0 1286.9 1245
1,6 2156.8 2154 2151 1843.5 1842.7 1693.6 1679.7 — 1574.3 1561.3 1546
2,6 23858 — — 2189.6 2189.0 2119.7 — — 1762.4 1762.6 1748

[5] T. Mazuch, J. Horacek, J. Trnka,

J. Vesely, Natural modes and frequencies of a thin
clamped-free cylindrical storage tank partially filled with water: FEM and measurements,
Journal of Sound and Vibration, Vol.193, pp.669-690, 1996
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NUMERICAL RESULTS
Fluid Storage Tanks
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Fig. 4. Predicted mode shapes with m =1 and n=3: (a) empty shell, d/L=0
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This study Amabili [23] This study Amabili [23]
! |
i %
i i
i i
' i
| i
:
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Fig. 7. Comparisons of predicted wet mode shapes of completely filled hermetic can for 7 (or i) = 3: (a) first symmetric
shell-dominant mode; (b) first anti-symmetric plate-dominant mode; (c) first symmetric plate-dominant mode; (d) first
anti-symmetric shell-dominant mode; (e) second symmetric plate-dominant mode; (f) second anti-symmetric plate-
dominant mode; (g) second symmetric shell-dominant mode; (h) second anti-symmetric shell-dominant mode.



NUMERICAL RESULTS

Elastic Structure Containing Axial Flow
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Fig. 1. Cylindrical shell conveying flowing fluid, (a) with rigid extensions and (b) with flexible extensions.
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NUMERICAL RESULTS
Elastic Structure Containing Axial Flow

The structure adopted for calculations is a finite length cylindrical shell,
simply supported at both ends, and it was analytically investigated by
Weaver and Unny (1973), Selmane and Lakis (1997), Amabili et al
(1999) and Amabili and Garziera (2002). The shell structure has the
geometric and material properties: length-to-radius ratio L/R = 2,
thickness-to-radius ratio hi/R = 0.01, Young’s modulus E = 206 GPa,
Poisson’s ratio v = 0.3, and mass density ps = 7850 kg/m3. Fresh water
is used as the contained fluid with a density of pf = 1000 kg/m3.
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Elastic Structure Containing Axial Flow
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Elastic Structure Containing Axial Flow
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Conclusions

It can also be said that the hybrid method introduced in this study
can be applied to any shape of cylindrical structure partially in
contact with internal and/or external flowing fluid, in contrast to the
studies found in the literature.

The present study has demonstrated the versatility of the method
developed before and extended in this study further. By introducing
the linearly varying boundary elements in this study, the
convergence of the numerical predictions were obtained much faster
than those using constant distributions over the boundary elements.

the predicted frequency values behave as expected. It is to say that
they decrease with increasing non-dimensional axial flow velocity,
and they reach a zero frequency for the axial flow velocity at which a
static divergence occurs.



